«线性代数 克莱姆法则»
by pluvet on Dec 9, 2019

已知:

$$ ax + by + cz = {\color{red}j}\\ dx + ey + fz = {\color{red}k}\\ gx + hy + iz = {\color{red}l}\\ $$

当中的矩阵表示为:

$$ {\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}}{\begin{bmatrix}x\\y\\z\end{bmatrix}}={\begin{bmatrix}{\color {red}j}\\{\color {red}k}\\{\color {red}l}\end{bmatrix}} $$

当矩阵可逆时,可以求出x、y和z:

$$ x = \frac { \begin{vmatrix} {\color{red}j} & b & c \\ {\color{red}k} & e & f \\ {\color{red}l} & h & i \end{vmatrix} } { \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} } $$

$$ y = \frac { \begin{vmatrix} a & {\color{red}j} & c \\ d & {\color{red}k} & f \\ g & {\color{red}l} & i \end{vmatrix} } { \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} } $$

以及

$$ z = \frac { \begin{vmatrix} a & b & {\color{red}j} \\ d & e & {\color{red}k} \\ g & h & {\color{red}l} \end{vmatrix} } { \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} } $$

添加新评论